A gate valve isolates a portion of a water supply as necessary and actively regulates the flow of liquid by either beginning or halting it. Gate valves, also known as sluice valves, come in a variety of designs and are intended for specific applications in HVAC, industrial, and utility distribution pipeline systems. Let’s examine the functions of gate valves, the differences between the most common varieties, and the considerations that should be made when choosing a gate valve for a certain application.
What is a gate valve?
A gate valve is one kind of valve that’s utilized to regulate certain areas of a water supply system. It functions similarly to a gate that can be opened or closed to let liquid flow through it.
In order to let flow or prevent it, a wedge or gate on the valve travels up and down. An actuator, which may be manually driven or powered by electricity, pneumatics, or hydraulics, is attached to the stem of the valve and controls this movement. Gate valves come with two types of stems: non-rising stems, which remain stationary as the gate moves within the valve body, and rising stems, which move up and down the gate. The non-rising stem type is often used in subterranean applications and waterworks when there is a shortage of space.
Stop valves, line valves, wedge gate valves, and sluice valves are some other names for gate valves. It’s crucial to distinguish them from bigger equipment called sluice gates or penstocks, which regulate the flow of water and sewage in drainage systems and sewage treatment facilities.
Gate valve operation
Similar to other valves, a gate valve functions. By turning the hand wheel to raise or lower the gate on the stem via the threads, you may open or shut the valve. In contrast to some valves that may be completely opened or closed with just a quarter turn, a gate valve usually has to be fully opened or closed several 360° rounds.
The media may move freely between the intake and output when the gate is lifted, creating an open pathway. Media flow is stopped when the gate is lowered, closing the valve.
Due to the non-linear fluctuations in flow rate that gate valves’ design produces, especially close to complete closure, they are more suited for on/off control than for regulating flow. Because of the fast flow through partly open valves, this may result in more wear and tear on the gate and seat. Furthermore, there might be vibrations, which could reduce the valve’s longevity. Therefore, rather than modifying flow rates, gate valves work best when they are utilized to completely open or stop the flow of media.
What is a gate valve used for?
A common use for gate valves is the isolation of fire mains, wastewater, sewage systems, and water supplies during upkeep, repairs, or new installations.
Gate valves come in a variety of varieties designed for specific uses. Wedge gate valves, parallel gate valves, knife gate valves, and rising/non-rising stem gate valves are examples of common designs. Gate valves fall into a number of categories:
Selecting the appropriate kind relies on the particular use case. For example, because of their longevity, metal seat gate valves with a non-ferrous metal face are perfect for sewage and wastewater applications. Resilient seated gate valves work well for segregating clean, neutral fluids and water because of their rubber-encapsulated wedge. Conversely, knife gate valves work well with dry bulk materials and thick fluids.
Gate valves used in the waterworks sector often use non-rising stems, also referred to as inside screw stems, in which the stem remains within the valve body while the valve is in operation. Applications requiring less space and subterranean locations may benefit from this design.
Introduction Triple-offset butterfly valves are improved flow-control mechanisms that have three radial offsets for better sealing and efficiency while performing difficult operations. The design is friction-free, so it guarantees no leakage and high reliability for extreme pressures and temperatures. Lianke Valve, a foremost player in the industry, has modified this technology in its fluorine-lined butterfly […]
Air pinch valves with flanged connections feature secure and easy installation, ensuring a tight seal in piping systems. They are designed for corrosion and abrasion resistance, making them ideal for handling abrasive and corrosive materials, while their quick operation and self-cleaning design reduce maintenance needs. Compared to other valve types like butterfly or diaphragm valves, […]
A simplex basket strainer is a straightforward yet essential piece of equipment in many industries. It is designed to remove particles and impurities from liquids or gases within a pipeline. Often referred to as a strainer simplex, it plays a crucial role in ensuring the following: This article explores what a simplex basket strainer is, […]
Piping and Instrumentation Diagrams (P&ID) are essential tools for representing the process flow and control systems in industries such as oil and gas, chemical manufacturing, and water treatment. They use standardized symbols to depict the various components, including valves, pipes, and instruments, which allows engineers to visualize and communicate how a system operates. Among these […]